Arbeitsblatt: Gleichungen Dossier
Material-Details
Startet sehr einfach und mit Veranschaulichungen
Ist aufgebaut aus Seiten aus dem Internet.
Mathematik
Gleichungen / Ungleichungen
7. Schuljahr
15 Seiten
Statistik
213206
73
4
14.08.2025
Autor/in
Esther Esther Iten
Land: Schweiz
Registriert vor 2006
Textauszüge aus dem Inhalt:
Name: Theorie Terme umformen Addition Subtraktion: Multiplikation: Multiplikation von Summen und Differenzen 1 Terme umformen 1 Ordne jeweils die Variablen und vereinfache die Terme. a) 20 8 4a5c3b 453abc 60 60abc b) 9 5 4 25 4 3 15 40 8g7e2 9yx46 12 5 5 20 30 3 Beachte die Vorzeichenregeln für die Multiplikation rationaler Zahlen. 3 4 3 4 12ab 3 (–4) 3 (–4) –12ab –3 (–4) (–3) (–4) 12ab –3 4 (–3) 4 –12ab 2 Vereinfache. a) 5 7 1 b) –9 (–p) 8 c) (–4) (–3) –n 8 9 –1 4 (–9) –14 (–5) 3 (–7) –2 (–4) (–a) 25 (–7) –17 1 3 6 (–19) –11 (–13) In Summen und Differenzen können gleichwertige Terme zusammengefasst werden. a) 7a 3b 5a 6b b) –2d 4c 9c 5d 5c c 3a –x 12y x 13y 12c 13d 5c 44d –3g 14e 23e 5g c) 6b 1,2b 3c 9,3c 3a 5b – 9a 3b 3a – 9a 5b 3b –6a 8b 4 Fasse zusammen. 3 Fasse zusammen. 1,2y 7z – 9z 3,4y –r – 3,2p – 7r 1,2p –xy 9x 2xy – 7y 8x xy 9x 8x – 7y – xy xy 2xy 17x – 7y 2xy a) 21yz – 24x – 8yz 25x b) 13 – 4ax 27 – 16y 11ax – 3y 2ab 6bc 7ab –13bc –12pq 23xy 17pq – 9xy p 78z – 18bx 41z – 19z –8px – 3ay 14 – 9 23ay – 2px 17bx 13cx 39bx 11x 9y – 12xy – 11y 201xy 13cx – 71 – 14cx 100 12,3ab – 7,4bc 6,5ab – 19ab 2 Terme aufstellen 1 Schreibe als Term. Vervollständige die Tabelle. Text Addition Term die Summe aus 10 und einer Zahl 10 x Multiplikation eine Zahl vermehrt um 6 zu einer Zahl 12 addieren die Differenz aus 13 und einer Zahl Subtraktion Text 13 – eine Zahl vermindert um 50 das Produkt aus einer Zahl und 17 von einer Zahl 11 subtrahieren 17 das Vierfache einer Zahl eine Zahl multipliziert mit 20 der Quotient aus einer Zahl und 3 Division Term x:3 eine Zahl dividiert durch 10 der fünfte Teil einer Zahl 2 Schreibe als Term. a) eine Zahl vermindert um 15 b) eine Zahl dividiert durch 15 c) die Differenz aus einer Zahl und 100 d) das Produkt aus 30 und einer Zahl e) die Summe aus einer Zahl und 8 f) von 120 eine Zahl subtrahieren g) das Sechsfache einer Zahl h) der zehnte Teil einer Zahl 3 Schreibe als Term. Text die Summe aus dem Vierfachen einer Zahl und 28 Term 4 28 a) die Differenz aus dem Fünffachen einer Zahl und 45 c) das Doppelte einer Zahl vermehrt um 25 e) das Produkt aus einer Zahl und dem Zweifachen der Zahl vermehrt um 10 Text die Hälfte einer Zahl vermindert um 20 Term : 2 – 20 b) das Siebenfache einer Zahl vermehrt um 50 d) die Summe aus dem Fünffachen und dem Dreifachen einer Zahl f) der Quotient aus einer Zahl und 6 vermindert um 15 4 Drücke den Term in Worten aus. a) 12 b) 30 – c) 9 d) 24 x e) 3 – 18 f) 200 – 4 g) 6 3 h) : 3 – 2 3 Terme berechnen 1 In dem abgebildeten Rechteck werden die Seitenlängen mit der Variablen beziehungsweise mit der Variablen bezeichnet. Ersetze die Variablen und durch die in der Tabelle angegebenen Seitenlängen (in cm) und berechne jeweils den Flächeninhalt und den Umfang des Rechtecks. b ab 2a2b 7 5 Term: 4 · – 7 2 · 6 4 2 Setze für die Variablen die angegebenen Zahlen ein und bestimme den Wert des Terms. Ergänze die Tabelle. Ersetze durch –2: 4 · (–2) – 7 2 · (–2) –8 – 7 (–4) 7 –9 33 Term 4–x 2·x–3 x–31 3 In dem Beispiel wird jeweils gezeigt, dass die Terme 5 (x – 6) und 5 – 30 sowie 8 (x 2) und 8 16 äquivalent (gleichwertig) sind. Überprüfe, ob die Terme in einem Feld äquivalent sind. Kreuze an. 7x 2 – 3x – 4 13 9 4x – 2 3 Wert des Terms Term Wert des Terms –11 –a 9 28 –3 · 27 –6 – 5 · 2 5 (x – 6) 5 – 30 5 (3 – 6) 5 (–3) –15 5 3 – 30 15 – 30 –15 5 (x – 6) 5 – 30 8 (x 2) 8 16 10 8 (10 2) 8 12 96 8 10 16 80 16 96 8 (x 2) 8 16 2x 8 4 (2x 6) 8x 28 5x – 15 5 (3 – 2x) 15 – 10x 4 (x 4) 2 (x 4) 5 (x – 3) 6x – 6 12x – 6 13x – 10 – 8x 4 3 (4x – 2) 8 4x 4 Waagen im Gleichgewicht 1 Notiere zu jeder Waage die entsprechende Gleichung. Bestimme das Gewicht der Schachtel. a) b) 2 Ergänze die Schachteln und Massestücke auf den Waagschalen passend zu den Gleichungen. a) b) 3 Forme die Gleichungen um. Ergänze Schachteln und Massestücke auf den Waagschalen passend zu den einzelnen Schritten der Umformung. a) b) 5 Waagen im Gleichgewicht 1 Löse die Gleichung durch Umformen. Ergänze. a) b) x46 x59 c) d) 2 Löse die Gleichung durch Umformen. Ergänze. a) b) 4x 4 12 4x 8 6 Gleichungen mit auf einer Seite 1 Löse die Gleichung. x 2 14 –2 b) 4 13 2x c) 3 2 2x d) – 2 8 2 2x e) – 3 7 2–x f) – 7 1 2–x g) 2x 8 i) 5x 15 1x j) 3x 12 l) 6x 18 1x m) 8x 56 1x n) 8x 24 1x 1x k) 5x 15 1x 2–x h) 3x 9 1x o) 7x 49 1x 1x 2 Löse die Gleichung. a) 2x 2 16 –2 b) 3x 1 10 –1 c) 5x 1 16 –1 2 2x :2 1 3x :3 1 5x :5 2 2 1 3x 1 5x d) 4x – 3 9 3 e) 2x – 1 5 1 f) 3x – 2 16 2 3 – 4x :4 1 – 2x :2 2 – 3x :3 3 – 4x 1 – 2x g) 2x 7 11 – 2 – 3x h) 3x 2 14 : 2 7x – : 3x 3 18 x 4 b) 3x – 7 x 21 : 3x c) 5x 2 17 –3 7 :3 :4 d) – 3 x 7 – 3 2 3 Bestimme jeweils die Lösung. a) 2x 3 18 i) 4x 3 19 e) 3x 3 4x 73 f) 2x 1 2x 3 16 x–3x 3 3 4x 2 1 2x 3 4 Welchen Fehler hat Markus gemacht? Löse anschließend die Gleichung korrekt. 2x 4 x 1 11 4 x 2x 5 11 –5 4 x 1 2x 6 :2 2 4 x 1 3 7 Gleichungen mit auf beiden Seiten 1 Löse die Gleichung. a) 3x – 2 x 10 2x – 2 10 –x :2 b) 4x 3 x 6 –x c) 3x 12 x 18 3 –3 12 :3 d) 5x 1 2x 13 –2x –x –12 :2 e) 6x 2 2x 10 –2x f) 7x 3 5x 13 –5x 1 –1 2 –2 3 –3 :3 :4 :2 g) 4x – 1 x 11 –x h) 7x – 2 3x 14 –3x i) 8x – 11 3x 9 –3x 1 2 11 :3 :4 :5 2 Löse die Gleichung. a) 4x – 1 2x 5 b) 5x 1 x 9 c) 3x – 3 x 7 d) 5x 2 3x 8 e) 4x 4 x 16 f) 7x – 7 3x 17 g) 15x 13 7x 69 h) 17x 4 5x 40 i) 19x 16 11x 80 k) 24x – 9 7x 42 l) 20x – 12 9x 98 m) 18x 12 6x 60 3 Fasse zuerst gleichartige Summanden zusammen. Löse dann die Gleichung. a) 7x – 13 x 1 3x 18 b) 5x 3 – 2x – 5 x 13 c) 2x – 2 4x 6 3x 19 d) 3x – 2 3x – 1 8 2x 9 e) – 5 2x 2 3x 3 – 2x 4 f) 5x – 1 – – 1 –2x – 6 3x – 2 8 Gleichungen mit auf beiden Seiten 1 Löse die Gleichung. Löse zunächst die Klammern auf. a) 3(x 2) x 10 b) 5(x – 1) 2x 7 c) 4(x 1) 3x 5 d) 4(x 2) 3(x 3) e) 8(x 3) 6(5 x) f) 9(x 1) 7(3 x) 2 Bestimme die Lösung der Gleichung. a) 8(x 4) 7(5 x) b) 6(x 2) 4(x 4) c) 12(1 x) 9(4 x) d) 12(1 x) 5(x 8) e) 7(x 3) 9 5(x 8) f) 10(x – 4) 2(x 36) 3 Beim Lösen der zwei Gleichungen hat Maxim Fehler gemacht. Kreise die Fehler ein und löse anschließend die Gleichungen korrekt. a) 7(x 2) 10 5x 12 ()7x 2 5x 22 –5x ()2x 2 22 –2 ()2 2x 20 :2 ()2 2x 10 b) 7(x 1) x 2 2x 13 ()7x 7 5x 13 ()2x 7 13 ()7 2x 6 ()7 2x 3 –5x –7 :2 9 ÜBEN Gleichungen lösen Aufgabe 1.1: Bestimmen Sie die Lösung folgender Gleichungen: a) 2x412 e) 10155x b) 3x413 f) 13x1339 c) 2x511 g) 2,5 x7,510 d) 102x12 h) 0,5 x213 Aufgabe 1.2: Bestimmen Sie die Lösung folgender Gleichungen: a) 2x412x e) 2,5 x33,5 x1 b) 5x8123x f) 1,25 x70,25 x15 c) 153x11x g) 1,2 x6,20,8 x0,6 d) 3x55x7 h) 0,5 x31,5 x5 Aufgabe 1.3: Bestimmen Sie die Lösung folgender Gleichungen: (Genauigkeit: 4 signifikante Stellen) 1 a) 2x14 x3 2 b) 3x3172x 3 2 c) x3 x7 2 3 d) 14x173x13 e) 27x1010111x f) 1013x1511x g) 3 7 3 x 15 – 2 2 7 h) 12 – 0,4131,2 5 Aufgabe 1.4: Bestimmen Sie die Lösung folgender Gleichungen: (Genauigkeit: 4 signifikante Stellen) a) 9 x5333x e) 15x12323x6 b) 35x1775x f) 713x8x2 7x56 c) 3 x9197x g) 21,53x102x – 14,5 d) 95x73159x h) 7x – 147,51052x – 14,5 Aufgabe 1.5: Bestimmen Sie die Lösung folgender Gleichungen: a) 2 5(3 x1)x(2 5) e) (143)15( 2 x)17,25 b) 3 0,5( 2)16(3 x2)0,5 f) 4(7x )513(x 2) c) 15(32 x)31 x(2 5)(422 x)4 g) 10(2 x(53 ))13(x 1) d) 0,7 5( 0,71,4 x)1712(2 x15) h) (10x)0,2516(25 x)13x Zahlenrätsel 1 Schreibe das Zahlenrätsel als Gleichung und bestimme die Lösung. a) Das Neunfache der gesuchten Zahl vermehrt um 14 ergibt 50. die gesuchte Zahl: das Neunfache der Zahl: 9x b) Das Fünfzehnfache einer Zahl vermindert um 10 ergibt 95. das Neunfache der Zahl vermehrt um 14: Gleichung: –14 :9 Die gesuchte Zahl heißt c) Das Achtfache einer Zahl vermindert um 6 ist genauso groß wie das Vierfache der Zahl vermehrt um 2. d) Addierst du zu einer Zahl 5 und multiplizierst das Ergebnis mit 3, so erhältst du das Fünffache dieser Zahl vermehrt um 7. die gesuchte Zahl: die Zahl addiert mit 5: x5 die Zahl addiert mit 5, multipliziert mit 3: das Fünffache der Zahl: das Fünffache der Zahl, addiert mit 7: Gleichung: e) Das Dreifache einer Zahl vermindert um 2 ist so groß wie das Doppelte der Zahl vermehrt um 2. Die gesuchte Zahl heißt 10 Sachaufgaben 1 Jan spart für sein 199 € teures Fahrrad 9 Monate einen festen Betrag. Seine Oma gibt 64 Euro dazu. Betrag (€) jeden Monat: Betrag (€) insgesamt gespart: Betrag (€) Oma: Fahrradpreis (€): Gleichung: Antwort: 2 Eine Flasche Apfelsaft kostet 1,50 € und ein Stück Kuchen 2,20 €. Emma hat für eine Flasche Apfelsaft und mehrere Kuchenstücke 10,30 € bezahlt. Anzahl der Kuchenstücke: Kosten (€) der Kuchenstücke: Kosten (€) einer Flasche Apfelsaft: Kosten (€) insgesamt: Gleichung: Antwort: 3 Timo kauft sich einen neuen Füller für 8,90 € und mehrere Patronen für 0,60 €. Er bezahlt insgesamt 13,70 €. Anzahl der Patronen: Kosten (€) der Patronen: Kosten (€) eines Füllers: Kosten (€) insgesamt: Gleichung: Antwort: 11 Sachaufgaben 1 Drei Pakete wiegen zusammen 27 kg. Das zweite Paket ist dreimal so schwer wie das erste. Das dritte Paket ist 2 kg schwerer als das erste. Gewicht des ersten Pakets: Gewicht des zweiten Pakets: Gewicht des dritten Pakets: Gesamtgewicht: Gleichung: Antwort: 2 Katja ist 29 Jahre jünger als ihre Mutter. Ihre Oma ist fünfmal so alt wie sie. Zusammen sind sie 127 Jahre alt. Das Alter von Katja: Das Alter von Katjas Mutter: Das Alter von Katjas Oma: Alter gesamt: Gleichung: Antwort: 3 Stelle eine Gleichung auf, löse sie und formuliere einen Antwortsatz. a) Beim Fußball haben Mike, Jörn und Mehmet zusammen 10 Tore geschossen. Jörn hat doppelt so viele Tore erzielt wie Mike, Mehmet hat zweimal mehr als Mike getroffen. b) Die Geschwister Lara, Julia und Max sind zusammen 23 Jahre alt. Max ist doppelt so alt wie Lara, Julia ist 4 Jahre jünger als Lara. 12 Terme in der Geometrie 1 Gib für jede Figur einen Term zur Berechnung des Umfangs an. a) b) c) Term zur Bestimmung des Umfangs: abab oder: 2 2 2 Gib einen Term an, mit dem du den Inhalt der gefärbten Fläche bestimmen kannst. a) b) d) e) Term zur Bestimmung des Flächeninhalts: 3a35 oder 3 (a 5) c) 3 a) Gib jeweils einen Term an, mit dem du den Inhalt einer Seitenfläche des Quaders bestimmen kannst. Ergänze das abgebildete Netz. b) Notiere einen Term zur Bestimmung des Oberflächeninhalts. 13