Arbeitsblatt: Mathbuch 6. Schuljahr

Material-Details

Theorie und Übungen zum Mathbuch 6
Mathematik
Gemischte Themen
6. Schuljahr
26 Seiten

Statistik

85343
1361
9
18.08.2011

Autor/in

Rahel Fässler
Land: Schweiz
Registriert vor 2006

Downloads Arbeitsblätter / Lösungen / Zusatzmaterial

Die Download-Funktion steht nur registrierten, eingeloggten Benutzern/Benutzerinnen zur Verfügung.

Textauszüge aus dem Inhalt:

Mathematik 1. Realschule 2010 Arithmetik 1. Thema Die 4 Grundoperationen: Addition – Subtraktion – Multiplikation Division Theorie 1. Die Addition Addition ist der Fachausdruck für Zusammenzählen. Addieren heisst zusammenzählen. Präge dir die neuen Bezeichnungen ein! 12 Summand plus 15 Summand 27 gleich Summe 2. Die Subtraktion Subtraktion ist der Fachausdruck für Abzählen (wegnehmen). Subtraktion heisst abzählen (wegnehmen). Präge dir die Bezeichnung ein. 26 Minuend minus 14 Subtrahend gleich 12 Differenz Aufgaben: Addition 1. Aufgabe • 526 7856 854 359 • 796 54 698 3659 12 • 15‘863 6‘597 62842 963‘541 • 487 ? 4587 452 89 11‘508 2. Aufgabe Der Vorverkauf für ein Spiel der Champions League vom Mittwoch begann am Montag der Vorwoche. In den Verkauf gelangten 48000 Sitzplätze. Abgesetzt wurden am ersten Tag 13‘4000, am Dienstag 9‘2000, am Mittwoch 6188, am Donnerstag 4875 und am Freitag 3667 Billetts. Wie viele Billetts waren danach noch erhältlich? 3. Aufgabe Mathematik 1. Realschule Seite 1 Schreibe die Rechnungen auf und rechne aus! Addiere die Summe aus 320 und 188 mit der Differenz aus 400 und 298. Subtrahiere von der Differenz aus 87 und 16 die Differenz aus 79 und 32. Subtrahiere die Summe der Zahlen 340 und 250 von 1400. Vermehre die Summe aus 34 und 156 um 3000 a) b) c) d) 4. Aufgabe 19,52 € 23,06 € 20,31 € 37,42 € 4,20 € 8,89 € 17,85 € 28,89 € 3,78 € 12,33 € 11,09 € 13,61 € 5. Aufgabe Berechne die Aufgaben im Heft, suche die Lösung und trage den darüber stehenden Buchstaben unten ein! Das Lösungswort sieht man manchmal am Himmel. 1. 23574 45674 46432 97865 65438 58354 2. 76834 87623 67345 46543 75676 67341 3. 67945 87867 78345 85465 45367 90788 4. 47239 23456 35468 98765 78421 43534 5. 24567 87654 26458 34543 91427 11233 6. 78345 24689 27457 98787 86946 86857 7. 98785 80980 98989 77554 59362 98990 8. 54743 21213 55566 45466 84629 55422 9. 36723 45352 23425 98979 93623 73511 10. 96756 67456 76548 23100 79352 83251 337337 565433 664197 326883 638723 455777 514660 634452 634122 978990 518519 518539 421362 426463 275882 403081 419482 317039 371613 6. Aufgabe Anfang November verfügt Familie Winter über einen Vorrat von 3750 Heizöl. Sie verbrauchen im November 618 l, im Dezember 805 l, im Januar 983 und im Februar 864 l. a) Wie viele Liter Öl sind Ende Februar noch im Tank? b) In den Öltank passen 4000 Liter. Wie viel Öl ist nötig, um den Tank Ende Februar wieder zu füllen? 7. Aufgabe Ergänze die Aufgaben auf dem Blatt! Mathematik 1. Realschule Seite 2 7 Artikel a) Einzelpreis Gesamtpreis 4 c) 2 8. Aufgabe Die gesamte Miete eines Hauses beträgt 1 589 €. Für den ersten Stock werden 432 €, für den zweiten Stock 325 € und für den dritten Stock 125 € gezahlt. Wie viel Miete wird für das Erdgesc hoss gefragt? 9. Aufgabe In einer Mathematik 1. Realschule Seite 3 Stadt stehen 5 Häuser dicht aneinand er. Das erste ist 14 lang, das zweite ist 1m länger, das dritte ist 2 kürzer als das erste, das vierte ist 4m länger als das zweite und das fünfte ist 8m kürzer als das vierte. Wie lang ist jedes Haus? Mach eine Zeichnun g! Wie lang ist die ganze Häuserre ihe? 10. Aufgabe Familie Müllers Auto hat ein Gesamtg ewicht von 1500 kg. Das Auto wiegt leer 850 Mathematik 1. Realschule Seite 4 kg. Die Familie fährt in den Winterurl aub. Vater wiegt 95kg, Mutter 72kg, Tom 54 kg, Peter 45 kg und die kleine Sandra 20 kg. Wie viel kg Gepäck darf die Familie laden? Familie Kaiser kauft in einem Möbelha us einen Schrank zum Sonderpr eis von 2 752 €. Der normale Preis betrug 2 999 €. Wie viel hat die Familie gespart? 11. Aufgabe a) Addiere die Differenz der Zahlen 87 und 78 zur Mathematik 1. Realschule Seite 5 Zahl 91. b) Subtrahiere von der Zahl 52 die Summe der Zahlen 13 und 23. e) Subtrahiere von der Summe der Zahlen 50 und 30 die Differenz dieser beiden Zahlen. d) Addiere zur Summe der Zahlen 64 und 87 die Zahl 132. f) Subtrahiere von der kleinsten 4-stelligen Zahl die Summe der Zahlen 250 und 50 12. Aufgabe Schreibe eine eigene Rechena ufgabe zum Thema Addition auf. Aufg aben Subt rakti on 1. Aufg • abe 4886 9– 895 – 579 – 7895 – 59 Mathematik 1. Realschule Seite 6 • • • 985‘4 12 – 26‘98 5– 96‘14 6– 524‘1 23 – 45 1548 95 – 65‘45 8– 1‘589 – 963 – 74 9889 54 ? – 85‘26 5– 7‘521 – 258 888‘0 41 2. Aufgabe In einem Tanklast wagen sind 18‘400l Heizöl. Im gleichen Quartier beliefert die Chauffeu re vier Haushalt ungen mit 3250l, 1575l, 2112l und 3163l Heizöl. Wie viel Liter bleiben im Mathematik 1. Realschule Seite 7 Tanklast wagen? 3. Aufgabe Frau Schön kauft sich neue Kleidung Sie ersteht eine Hose für 69 €, eine Bluse für 45€, und Schuhe für 99€. Wenn sie insgesa mt 281€ ausgege ben hat, was hat dann ihre neue Handtas che gekostet 4. Aufgabe Schreibe eine eigene Rechena ufgabe zum Thema Subtraktio auf. 5. Aufgabe Frau Seifert hat noch 4‘328Fr. auf ihrem Konto. Sie überweist Mathematik 1. Realschule Seite 8 845Fr. für ihren neuen Wäschetr ockner und bezahlt eine Rechnun über 937Fr. Wie viel Geld hat sie nun noch auf ihrem Konto? 6. Aufgabe Zähle die benachb arten Zahlen zusamm en! Berechn den Untersch ied der Schreibe das Ergebnis in das darüber benachb arten Zahlen. Schreibe das liegende Feld! Ergebnis ins darunter liegende Feld! Mathematik 1. Realschule Seite 9 48 30 18 7. Aufgabe 1 D e u m n e h i ß n 2 4 5 n 3 1 7 B r c n d Mathematik 1. Realschule Seite 10 e u m . 2 D r r t S m a d s 7 4 d e u m 5 1 2 3. Mathematik 1. Realschule Seite 11 r in e d is 9 7 5 d r u tr h n 4 3 0 B r c n di D iff r n z. 4 D r w Mathematik 1. Realschule Seite 12 i e u m n i t 4 4 d e u m 2 0 8 5 S b r h e e o d Mathematik 1. Realschule Seite 13 Z h 5 4 0 i Z h 1 3 5 6. Die Summe dreier Zahlen ist 860. Der erste Summan heißt 430 und der dritte 115. 8. Aufgabe Berechn alle Aufgabe und unterstre iche bei jedem Ergebnis die erste und die letzte Ziffer. Die erste Mathematik 1. Realschule Seite 14 Ziffer gibt dir die Spalte, die letzte Ziffer jeweils die Zeile eines Lösungs buchstab en an. Hast du alle Buchsta ben, hast du hoffentlic auch das richtige Lösungs wort. 1 9 3 2 3 1 8 1 5 6 5 8 6 3 4 1 5 1 4 7 9 8 Mathematik 1. Realschule Seite 15 7 6 5 4 3 W 2 1 0 0 1 Lösung swort: . Theo rie 3. Die Multipli kation Multiplik ation ist der Fachaus druck für mal rechnen. Präge dir Mathematik 1. Realschule Seite 16 die neuen Bezeichn ungen ein! 12 • 15 180 Faktor al a kt r gl ei h r d kt 4. Die Divisio Subtrakti on ist der Fachaus druck für Abzähle (wegneh men). Subtrakti on heisst abzählen (wegneh men). Präge dir die Mathematik 1. Realschule Seite 17 Bezeichn ung ein. 26 13 2 Divid n g t ei lt iv is r le ic Q o ti n Aufg aben Multi Mathematik 1. Realschule Seite 18 plika tion 1. Aufgabe Löse schriftlic im Heft! a) 3 9889 b) 6 8778 c) 9 3867 d) 9 7652 7 4109 4 7831 5 3090 3 9494 8 1997 2 3965 3 5210 6 8614 4 9281 5 3821 6 7302 9 1357 2. Aufg abe Die Mathematik 1. Realschule Seite 19 Kosten für den Bus am Wandert ag der 1aKlasse betragen 102 €. Deshalb sammelt der Klassenv orstand von allen 21 Schülern und Schüleri nnen 5 € ein. Der Übersch uss kommt in die Klassenk assa. Wie viel ist das? 3. Aufg abe Ein Autohän ger darf maximal mit 710 kg beladen werden. Im Anhänge sind schon 16 Kisten mit 35 kg. Wie viel kg darf man noch aufladen 4. Aufg abe Ein Mathematik 1. Realschule Seite 20 Weinbau er verkauft 5 Fässer Wein mit je 350 und 3 Fässer mit je 275l. Wie viel Liter verkauft er insgesa mt? Wie viel Geld nimmt er ein, wenn ein Liter 2 € kosten? 5. Aufgabe Überschl age zuerst. Rechne dann genau aus! Trage deine Ergebnis se dann in die Tabelle ein! Anzahl 4 Steckdosen 1,95 € 2 Dreifachstecker 3,85 € 3 3m – Kabel 4,98 € 1 Sicherung 17,00 € Gesamtpreis: Mathematik 1. Realschule Seite 21 Aufgaben: Division 1. Aufgabe 3699 9 3152 4 4266 6 5257 7 4235 5 4758 6 2967 3 2870 5 6128 8 3576 4 766 (E) 511 (L) 711 (O) 574 (E) 894 (L) 688 (O) 847 (N) 845 (T) 969 (B) 764 (N) 845 (T) 788 (V) 411 (S) 989 (N) 311 (U) 751 (O) 793 (G) 783 (U) 2. Aufgabe 5‘640 24 1‘8513 33 9‘088 16 164‘118 17 31‘488 123 65‘435 115 3. Aufgabe In einem Fahrradladen werden Fahrräder verkauft. BMX-Rad Eddy-Mercks-Rad Trecking-Rad Mountain-Bike 299 € 249 € 751 € 399 € Was kosten die Räder im Durchschnitt? 4. Aufgabe Bei einem Ausflug mit der Bahn nehmen 15 Schüler teil. Insgesamt sind 123,75 € zu zahlen. Wie hoch ist der Preis für einen Schüler? 5. Aufgabe Mathematik 1. Realschule Seite 22 Herr Wunderlich verdient im Jahr 30.960 €. Berechne sein Monatseinkommen. Davon spart er jeden Monat den zehnten Teil. Wenn er sich nach einem Vierteljahr ein neues Fahrrad für 750 € kauft, wie viel hat er dann von seinem gesparten Geld noch übrig? 5. Aufgabe Ich freue mich auf unsere Radtour mit der Jugendgruppe. Wir fahren 378 km in 7 Tagen. Aufgaben Zahlenbuch Übungsheft Kapitel 2: Aufgabe 1, 2, 3, 4 Kapitel 4: Aufgabe 1 Kapitel 14: Aufgabe 1, 2, 3, 4, 5 Kapitel 16: Aufgabe 1, 2, 3 Kapitel 3: Aufgabe 6, 7 Kapitel 6 und Kapitel 7 Kapitel 15: Aufgabe 1, 2 2. Thema Zehnersystem, Zahlenstrahl Theorie Bei unserer Stellenschreibweise fasst man immer 10 kleinere Einheiten zu einer grösseren zusammen. 10 Einer ergeben 10 Zehner 10 Hunderter 10 Tausender etc. 1 Zehner ergeben ergeben ergeben etc. 1 Hunderter 1 Tausender 1 Zehntausender etc. Übersicht über die Bedeutung der Stellen im Zehnersystem oder Dezimalsystem. Billionen Bil Milliarden Mrd Millionen Mio Tausender Hundert Zehn Eine Hundert Zehn Eine Hundert Zehn Mathematik 1. Realschule Seite 23 Eine HundertZehnEinHunderter Zehner Einer HT ZT H E 1. Der Zahlenstrahl Die Zahlen sind der Grösse nach geordnet. Die Abstände zwischen nebeneinanderstehenden Zahlen werden immer gleich gross gezeichnet. Anfangspunkt Mathematik Unendlichkeit 1. Realschule Seite 24 An dieser Anordnung sehen wir, dass jede natürliche Zahl ausser 1 einen Nachfolger und einen Vorgänger hat. Aufgaben 1. Aufgabe Schreibe als Zahlen. a) 3 HT9E 5Z 6ZT8T3H b) 7E9Z6ZT7T a) 2HT9H6T9Z b) 1M9Z6T4E8HT c) 3ZM8Z3ZT6H 2. Aufgabe Trage folgende Zahlen auf den Zahlenstrahl ein! – 20.000 – 75.000 – 5.000 Mathematik 1. Realschule – 105.000 – 12.500 Seite 25 0 10.000 20.000 30.000 Mathematik 1. Realschule Seite 26 40.000 50.000 60.000 70.000 80.000 90.000 100.000 3. Aufgabe Schreibe die Zahlen in Ziffern! Beispiel: einhundertfünfzehn 115 1) fünfhundertelftausend 2) zweihunderteinundneunzig 3) elfmillionendreiundzwanzigtausendneunzehn 4. Aufgabe Trage die Zahlen in die vereinfachte Stellentafel ein! 1) 965‘234 2) 1‘233‘400‘199 3) 14‘700‘001 4) 198‘789 5) 17‘223 Md HM ZM HT ZT H E Mathematik 1. Realschule Seite 27 Mathematik 1. Realschule Seite 28 5. Aufgabe Zerlege die Zahlen in ihre einzelnen Stellenwerte! Beispiel: 30‘712 3ZT7H1Z2E 1) 324‘467 2) 1‘890‘413 3) 17‘000‘399 4) 5) 600‘918 1‘234‘567‘890 6. Aufgabe Ordne die Zahlen! Beginne mit der kleinsten Zahl! 0‘789 12‘765 344‘002 13‘473 Mathematik 13‘670‘333‘100 1. Realschule 791 1‘023 1‘455‘908 141‘532 Seite 29 3. Thema Teiler, Vielfache Theorie: Teiler 1 2 5 Jede Zahl ist durch 1 teilbar. Eine Zahl ist durch 2 teilbar, wenn die letzte Ziffer gerade oder 0 ist. Eine Zahl ist durch 5 teilbar, wenn die letzte Ziffer 5 oder 10 ist. 579, 6730 268, 530 435, 6350 10 Eine Zahl ist durch 10 teilbar, wenn die letzte Ziffer 0 ist. 9990, 8100 3 Eine Zahl ist durch 3 teilbar, wenn die Quersumme durch 3 teilbar ist. 312, 2538 6 Eine Zahl ist durch 6 teilbar, wenn die letzte Ziffer gerade oder 0 ist und die Quersumme durch 3 teilbar ist. 876, 9150 9 Eine Zahl ist durch 9 teilbar, wenn die Quersumme durch 9 teilbar ist. 4 Eine Zahl ist durch 4 teilbar, wenn die zwei letzten Ziffern durch 4 teilbar (oder 00) sind. 136, 4496 8 Eine Zahl ist durch 8 teilbar, wenn die drei letzten Ziffern durch 8 teilbar (oder 000) sind. 6544, 11000 513, 4383 Gemeinsame Teiler Eine Zahl heisst gemeinsamer Teiler von zwei gegebenen Zahlen, wenn sie beide Zahlen ohne Rest teilt. Die grösste Zahl unter den gemeinsamen Teilern zweier Zahlen heisst grösster gemeinsamer Teiler (ggT) der beiden Zahlen. Theorie: Vielfache Wir suchen Vielfache der Zahl 3: 326 339 3 4 12 3 5 15 3 6 18 etc. Jede natürliche Zahl hat unendlich viele Vielfache, da es ja bekanntlich auch unendlich viele natürliche Zahlen gibt. Die kleinste Zahl unter den gemeinsamen Vielfachen zweier Zahlen heisst kleinstes gemeinsames Vielfaches (kgV) der beiden Zahlen. 8 und 12 kgV 24 Aufgaben 1. Aufgabe Notiere die Teilermengen: alle Teiler von 28: Mathematik 1. Realschule Seite 30 alle Teiler von 36: alle Teiler von 75: 2. Aufgabe Welches ist der größte Teiler, den beide Zahlen gemeinsam haben? von 8 und 12: von 34 und 85: von 56 und 98: von 14 und 63: 3. Aufgabe Bestimme den ggT aller drei Zahlen! von 10, 15 und 45: von 28, 70 und 126: 4. Aufgabe Suche das kleinste Vielfache, das beide Zahlen gemeinsam haben: von 9 und 15: von 6 und 9: von 10 und 25: von 16 und 24: 5. Aufgabe Bestimme das kgV aller drei Zahlen! von 4, 6 und 10: von 12, 18 und 30 6. Aufgabe Teilbarkeitsregeln! 2213 – 26757 – 27335 – 3105 –6512 – 7042 – 21540 27361 – 27426 – 35784 durch 3 teilbar sind: durch 9 teilbar sind: durch 6 teilbar sind: durch 4 teilbar sind: durch 5 teilbar sind: 7. Aufgabe Nenne das kleinste gemeinsame Vielfache (kgV) von 12 und 15! Wie heißt der größte gemeinsame Teiler (ggT) von 18 und 24? 8. Aufgabe Schreibe die ersten fünf Vielfachen der Zahlen 15 und 28 auf! V15 {} V28 {_} 9. Aufgabe Schreibe alle Teiler der Zahlen 45 und 54 auf T45 {} Mathematik 1. Realschule Seite 31 T54 {} 10. Aufgabe Kreuze richtig an! a) Zahl ist Vielfaches von b) Zahl ist Teiler von 4 6 9 15 24 42 84 128 72 3 60 7 108 16 11. Aufgabe Kreuze an! Zahl ist teilbar durch. Mathematik 1. Realschule Seite 32 2 3 4 5 6 9 10 120 225 3006 Mathematik 1. Realschule Seite 33 2295 Aufgaben Zahlenbuch Übungsheft Kapitel 26: Aufgabe 2, 3 Kapitel 27: Aufgabe 4, 5, 6 Kapitel 10: Aufgabe 1, 2, 3, 4 4. Thema Bruch Dezimalbruch Theorie 1. Bruchzahl oder einfach gesagt „der Bruch 3 Zähler 4 Nenner Mathematik 1. Realschule Seite 34 Der Strich, der die beiden Zahlen trennt, nennt man Bruchstrich oder man kann auch sagen, dass er die Division 3 4 ausführt. 2. Dezimalbruch 3 4 0,75 Dezimalbruch Milliarden Mrd Millionen Mio Tausender Hundert Zehn Eine Hundert Hundert Zehn Eine Zehn Eine HundertZehnEinZehntel hundertstel tausendstel Mathematik 1. Realschule Seite 35 HT ZT z t Aufgaben Zahlenbuch Übungsheft Kapitel 9: Aufgabe 1, 2 Kapitel 11: Aufgabe 5, 6 Kapitel 10: Aufgabe 1, 2, 3, 4 5. Thema Brüche erweitern und kürzen Mathematik 1. Realschule Seite 36 Theorie 1. Bruchzahl oder einfach gesagt „der Bruch 2 Zähler 3 Nenner Der Strich, der die beiden Zahlen trennt, nennt man Bruchstrich oder man kann auch sagen, dass er die Division 2 3 ausführt. 2. Erweitern Erweitern heisst: Zähler und Nenner eines Bruches mit der gleichen Zahl multiplizieren. Dabei ändert sich nur die Form, nicht aber der Wert des Bruches. •4 2 3 8 12 •4 3. Gleichnamig machen Brüche gleichnamig machen bedeutet, sie auf den gleichen Nenner bringen. 4. Kürzen Kürzen heisst: Zähler und Nenner eines Bruches durch die gleiche Zahl dividieren. Auch beim kürzen ändert sich nur die Form, nicht aber der Wert des Bruches. :3 9 12 3 4 :3 Das Erweitern und das Kürzen verändert nur die Form, nicht aber den Wert eines Bruches 5. Die Grundform eines Bruches Kürzen wir einen Bruch bis zur Bruchzahl, die nicht mehr kürzbar ist, haben wir dessen Grundform erreicht. Beispiel: 50 10 2 75 15 3 Aufgaben 1. Aufgabe Mathematik 1. Realschule Seite 37 Kürze so weit wie möglich. Die Lösungen sind im Bild versteckt. Male die entsprechenden Flächen mit Bleistift aus und du erhältst eine Lösungsfigur. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 13) 14) 11) 12) 2. Aufgabe Erweitere mit 10: 3. Aufgabe Bringe die Brüche auf den Nenner 48: 4. Aufgabe Bringe die Brüche auf den Nenner 100: Mathematik 1. Realschule Seite 38 5. Aufgabe Erweitere: 6. Aufgabe Mit welchem Wert wurde erweitert? 7. Aufgabe Mit welchem Wert wurde gekürzt? 8. Aufgabe Kürze durch 3: durch 4: durch 5: durch 6: durch 7: durch 8: durch 9: 9. Aufgabe Kürze! Mathematik 1. Realschule Seite 39 10. Aufgabe Ergänze! 11. Aufgabe erweitert mit dem Faktor erweitert mit dem Faktor 3 erweitert mit dem Faktor 4 erweitert mit dem Faktor 2 erweitert mit dem Faktor 4 erweitert mit dem Faktor 3 erweitert mit dem Faktor 3 erweitert mit dem Faktor 4 erweitert mit dem Faktor 5 erweitert mit dem Faktor 6 erweitert mit dem Faktor 2 erweitert mit dem Faktor 10 erweitert mit dem Faktor 7 gekürzt mit dem Faktor 2 gekürzt mit dem Faktor 2 gekürzt mit dem Faktor 3 gekürzt mit dem Faktor 3 gekürzt mit dem Faktor 2 gekürzt mit dem Faktor 2 gekürzt mit dem Faktor 5 gekürzt mit dem Faktor 4 gekürzt mit dem Faktor 4 gekürzt mit dem Faktor 3 gekürzt mit dem Faktor 3 gekürzt mit dem Faktor 7 gekürzt mit dem Faktor 9 12. Aufgabe Kürze so weit wie möglich. 36 48 327 918 624 410 721 1215 3642 Mathematik 1. Realschule Seite 40 10100 1001000 1224 1545 812 1218 13. Aufgabe Erweitere 48 16 25 10 34 12 97 21 510 100 410 20 29 18 47 8 910 90 10100 1000 Aufgaben Zahlenbuch Übungsheft Kapitel 44: Aufgabe 1, 2, 3 Kapitel 45: 1, 2, 3, 4, 5 6. Thema Runden Theorie Mathematik 1. Realschule Seite 41 Runden von natürlichen Zahlen Eine Zahl, die an die nächstliegende Zehner-, Hunderter-, ., Zahl angeglichen wird, nennt man eine gerundete Zahl. Zahlen, die genau in der Mitte liegen, werden auf die nächstgrössere Zehnerzahl (Hunderterzahl, Tausenderzahl, etc.) gerundet. 1 2 3 4 5 6 7 8 9 0 10 auf 210 220 230 240 250 260 270 280 290 200 300 auf Runden von Dezimalbrüchen Runde auf Zehntel 5,7679 5,8 Zehntel Stelle Runde auf Hundertstel 5,746 5,75 Hundertstel Stelle Runde auf Tausendstel 5,74295 5,743 Tausendstel Stelle Aufgaben 1. Aufgabe Runde auf Zehntel 4,26 6,3232 0,89 11,82 12,206 93,067 0,893 10,3507 8,573 0,965 7,137 101,009 9,04371 10,0098 346,9974 6,0677 0,77395 1,7321 2. Aufgabe Runde auf Hundertstel 3. Aufgabe Runde auf Tausendstel 4. Aufgabe Mathematik 1. Realschule Seite 42 Runde auf die hervorgehobene Stelle! – Beispiel: 1455 1500 2 567 795 179 430 19 759 55 5 359 600 8 435 64 6 798 600 26 834 990 11 412 803 5. Aufgabe Runde jede angegebene Zahl auf Hunderter und Tausender. a. 9 778 945 Mathematik 1. Realschule Seite 43 2 783 322 8 194 364 13 452 778 b. 756 090 909 10 007 875 83 004 45 637 6. Aufgabe Vergleiche! („größer als, „kleiner als oder „ist gleich) 3,5 3,50 0,75 0,74 125,632 135,632 7. Aufgabe Runde folgende Beträge auf ganze Zahlen! 3,89 29,34 35,19 0,901 8. Aufgabe Runde die Zahlen zum nächsten Tausender. a) 5 886 f) 845 b) 67 599 g) 75 000 Mathematik 1. Realschule Seite 44 c) 1 999 h) 19 629 d) 174 611 i) 8 000 e) 5 299 k) 437 7. Thema Dezimalbruch, Bruch, Prozent Theorie Dezimalbruch Bruch 0,75 3 4 Prozent 75% Wie komme ich zu: Prozent 100% 4 25 25 3 75% 100% Mathematik 1. Realschule Seite 45 Hier ist das Ganze 100% kann aber auch einen anderen Wert haben, wie zum Beispiel 360 oder die Fläche eines Grundstücks oder einen Geldbetrag etc. Beispiel: 100% 360 Wie komme sich zum: Dezimalbruch 1 4 0,25 0,25 3 0,75 1 Hier ist das Ganze Aufgaben 1. Aufgabe Bsp. 35% 35 0,35 100 a) b) c) d) e) f) g) 17 45% 97% 88% 142% 375% 205% 2. Aufgabe Schreibe als Prozent! Bsp. 3 75 75% 4 100 a) 7 2 b) 15 20 c) 12 5 Mathematik 1. Realschule Seite 46 d) 5 5 e) 8 50 f) 62 200 g) 18 36 3. Aufgabe Schreibe als Dezimalbruch bzw. als gekürzten Bruch! a) 45 b) 72 c) 8% 4. Aufgabe Schreibe als Prozentsatz (runde auf ganze Prozent!) a) b) c) 5. Aufgabe Wie viel Euro sind das jeweils? a) 35% von 750 € b) 12% von 1650 € c) 58% von 125 € d) 16% von 27,50€ 6. Aufgabe Familie Heinrich bezahlt für Strom und Heizöl monatlich 270 €. Sie rechnet mit einer Preiserhöhung von 6%. Wie viel Euro müssen sie dann jährlich insgesamt für Strom und Heizöl bezahlen? 7. Aufgabe Herr Wagner zahlt für eine Stereoanlage 1897,50 €. Im Preis sind 19% MwSt. enthalten. a) Wie viel Euro beträgt die Mehrwertsteuer und was würde die Anlage ohne sie kosten? b) Wie viel würde Herr Wagner bezahlen, wenn er bei Barzahlung 2% Skonto bekäme? 8. Aufgabe Ergänze. Rechne im Kopf! 5 von 300 dm sind 8 Mathematik 1. Realschule Seite 47 von 7100 € sind 20 von 8000 kg sind 40 von 500 sind 10 von 250 € sind 10 von 14 kg sind 25 Mathematik 1. Realschule Seite 48 von 80 sind 90 von 2000 € sind 7 von 900 € sind 500 von 31 € sind 50 von 4,26 € sind Mathematik 1. Realschule Seite 49 15 von 800 cm sind 200 von 3,40 km sind 22 von 70000 m sind 18 von 2000 sind 11 von 300 mm sind Mathematik 1. Realschule Seite 50 75 von 600 € sind 3,5 von 6400 € sind 4,5 von 400 sind 0,7 von 700 € sind 9. Aufgabe • Herr Wagner will einen neuen Fernseher kaufen. Dieser ist mit 2400 € ausgeschildert. Was spart Herr Wagner, wenn er bar bezahlt und dabei 5 Rabatt bekommt • In Deutschland leiden etwa 25 der Bevölkerung unter einer Allergie. Wie viel Menschen sind das bei 84 000 000 Bundesbürgern Mathematik 1. Realschule Seite 51 • Herr Siering holt einen Kostenvoranschlag von einer Handwerksfirma ein. Für Reparaturarbeiten verlangt diese 3200 €. Hinzu kommen noch 16 Mehrwertsteuer. Was muss Herr Siering also wirklich bezahlen? 10. Aufgabe Berechne! a. 53% von 900 € b. 17% von 340 c. 125% von 560 11. Aufgabe In einem Hotel gibt es jährlich 198.000 Gäste. Davon sind 55.440 Deutsche, 42.075 Franzosen, 40.590 Engländer und der Rest sind Spanier. Wie viel Prozent entspricht dies jeweils? 12. Aufgabe Gib in Prozent an! d. 24 € von 480 € e. 150 von 45 f. 24,5 von 1000 13. Aufgabe Ein Fahrrad kostet im Ausverkauf nur noch 371 € statt vorher 530 €. Wie hoch ist der Rabatt gewesen? 14. Aufgabe Berechne! g. 45 sind 20% von was? h. 700 sind 140% von was? i. 56 € sind 7% von was? 15. Aufgabe Ein Modegeschäft gibt einen Jubiläumsrabatt von 35%. Wie viel kosten nun folgende Artikel? Pullover, vorher 50 € Jacke, vorher 145 € Hose, vorher 80 € 16. Aufgabe Gib in Prozent an! j. 0,25 k. 0,125 l. 1,04 Aufgaben Zahlenbuch Übungsheft Kapitel 59: Aufgabe 8 Kapitel 45: Aufgabe 10 8. Thema Mathematik 1. Realschule Seite 52 Rechnen mit und ohne Klammern Theorie Betrachte die Rechnung: 3 • 6 5 • 2 ??? Wir treffen zwei Vereinbarungen: • • Punktrechnungen (Multiplikation, Division) kommen vor Strichrechnungen (Addition, Subtraktion). Was in Klammern steht, wird zuerst gerechnet. Rechenausdrücke wie die folgenden nennen wir auch Terme: 6 • 12 3 • 8 25 5 – 21 7 Aufgaben Zahlenbuch Übungsheft Kapitel 21: Aufgabe 1, 2, 3, 4, 5 9. Thema Brüche: Addition Theorie 1. Schritt ein Rechteck wird in 4 Teile zerlegt. (waagrecht) 2. Schritt 1/5 das Rechteck wird in 5 Teile zerlegt. (senkrecht) 3. Schritt Im Rechteck wird ein Viertel rot angemalt und einen Fünftel blau. 1/20 des Rechtecks ist doppelt gefärbt. Mathematik 1. Realschule Seite 53 4. Schritt Es soll nun kein kleines Rechteck doppelt bemalt sein. 1 1 5 4 9 4 5 20 20 20 Aufgaben Zahlenbuch Übungsheft Kapitel 21: Aufgabe 1, 2 Zahlenbuch Kapitel 19: Aufgabe 4, 5 10. Thema Brüche: Subtraktion Theorie 1 3 von 1 4 1 12 2 3 von 1 4 2 12 Mathematik 1. Realschule Seite 54 Aufgaben Zahlenbuch Übungsheft Kapitel 21: Aufgabe 1, 2 Zahlenbuch Kapitel 43: Aufgabe 4, 5 Mathematik 1. Realschule Seite 55